Electronic structure of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys.: Condens. Matter 20035219
(http://iopscience.iop.org/0953-8984/20/3/035219)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 29/05/2010 at 07:26

Please note that terms and conditions apply.

Electronic structure of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$

V R R Medicherla ${ }^{1}$, T Shripathi and N P Lalla
UGC-DAE Consortium for Scientific Research, University Campus, Indore 452017, India
E-mail: ramarao@iopb.res.in

Received 8 October 2007, in final form 31 October 2007
Published 19 December 2007
Online at stacks.iop.org/JPhysCM/20/035219

Abstract

The electronic structure of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ was investigated using photoemission, x-ray diffraction (XRD) and tight binding linear muffin tin orbital (TB-LMTO) band structure techniques. BaPbO_{3} is a base material for all Pb based superconductors. Rietveld analysis of the XRD data suggested that BaPbO_{3} is an orthorhombically distorted perovskite with Imma space group and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ possesses tetragonal structure with $I 4 / \mathrm{mmm}$ space group. LMTO calculations indicated an insulating ground state for $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ with a band gap of 1.3 eV and a metallic ground state for BaPbO_{3}. Ultraviolet photoemission results agree well with the LMTO calculations. The $\mathrm{Pb}-\mathrm{O} 1-\mathrm{Pb}$ bond angle in the basal plane is a key parameter in deciding the electronic structure of these compounds. The Pb 4 f and O 1 s core levels of BaPbO_{3} exhibited asymmetry on the high binding energy side of the peak, indicating that both Pb and O contribute to the density of states at the Fermi edge. The core levels of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ did not exhibit asymmetry. Core level asymmetry can be used to probe the local density of states at E_{F}.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Barium metaplumbate BaPbO_{3} (BPO) has attracted much attention due to its interesting physical properties. This simple perovskite has become the base material for several superconductors like $\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x} \mathrm{O}_{3}\left(T_{\mathrm{c}} \sim 12 \mathrm{~K}\right)$ [1], $\mathrm{BaPb}_{1-x} \mathrm{Sb}_{x} \mathrm{O}_{3}\left(T_{\mathrm{c}} \sim 3.5 \mathrm{~K}\right)$ [2], and $\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x / 2} \mathrm{Sb}_{x / 2} \mathrm{O}_{3}$ $\left(T_{\mathrm{c}} \sim 6 \mathrm{~K}\right)$ [3]. Orthorhombic perovskite, BaPbO_{3}, and body centered tetragonal perovskite, $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$, are the end members of the interesting Ruddelsden-Popper series $\mathrm{Ba}_{n+1} \mathrm{~Pb}_{n} \mathrm{O}_{3 n+1} \quad[4]$. Transport measurements exhibited metallic behavior in BaPbO_{3} and a semiconducting behavior in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ with temperature [5-7]. The driving mechanism of BPO metallicity is not very clear in the literature. It was attributed to oxygen vacancies by Ikushima and Hawalawa [8], and to unfilled d bands of Pb^{4+} by Shannon and Bierstedt [5]. BPO structure can be thought of as BaO layers separated by PbO_{2} layers. Transport in BPO is mainly decided by the PbO_{2} layer whereas the BaO layer contributes to the structural stability. Since the PbO_{2} is metallic [9], the PbO_{2} layer seems to be responsible for the metallic behavior of BPO.

1 Present address: Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751005, India.

The PbO_{2} layer in BPO is analogous to the $\mathrm{Cu}-\mathrm{O}$ layer in YBCO superconductor. Another mechanism anticipated for BPO conduction is the partial substitution of Pb by Ba . This process would tend to produce some amount of Pb^{2+} and provides carrier generation [10].

The structure of BaPbO_{3} has been studied extensively by several workers since its synthesis in 1958 by Hoppe and Blinne [11]. Earlier workers have reported a cubic perovskite structure for $\mathrm{BaPbO}_{3}[11,12]$. But later workers reported that BPO ceramics are of orthorhombically distorted perovskite structure with space group Pnma [5, 13]. Subsequent studies confirmed that BaPbO_{3} is actually monoclinic at room temperature with $I 2 / m$ space group [14]. Recent structural investigations suggested that BaPbO_{3} possesses orthorhombic structure with space group Imma at room temperature [15, 3]. Upon cooling BaPbO_{3}, down to 15 K , it exhibited a structural transition from orthorhombic, Imma structure to monoclinic, $C 2 / m$ structure [15]. On the other hand, investigations by Fu et al [16] did not evidence such a low temperature phase transition, but confirmed several structural phase transitions at higher temperatures.

The structure of BaPbO_{3} is a complicated and long standing fundamental issue. The conduction mechanism also
seems to have diverse explanations. The structure of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ on the other hand forms in the body centered tetragonal structure ($\mathrm{K}_{2} \mathrm{NiF}_{4}$ type) with $I 4 / \mathrm{mmm}$ space group. $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ is a wide band gap semiconductor with a gap of 1.7 eV [17]. Band structure calculations suggested that the shortened apical $\mathrm{Pb}-\mathrm{O}$ bond distance, compared to the planar $\mathrm{Pb}-\mathrm{O}$ distance, plays a vital role in driving $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ semiconducting [4]. The actual mechanism driving $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ insulating is still not very clear.
BaPbO_{3} has technological importance apart from possessing fundamentally challenging issues. This material demonstrates great potential in improving the characteristics of PZT films. BPO not only improves the microstructure, crystallinity, and ferroelectric properties but also reduces the leakage current of PZT films [18]. BaPbO_{3} is also a useful material in applications such as ceramic electrodes, conductive pastes, anticorrosion pigments and sintered resistors [19].

This paper reports a study of the electronic structure of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ using XPS and UPS techniques along with TB-LMTO band structure calculations. As mentioned before, the structure of BaPbO_{3} is controversial and may depend on the preparation method and conditions. Therefore, we have investigated the structure of these compounds using powder XRD and analyzed the data by the Rietveld refinement method. The output parameters of the Rietveld analysis were used for band structure calculations to obtain more relevant calculations on the materials prepared.

2. Experiment

Polycrystalline samples of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ were prepared by the solid state reaction method. High purity (99.99%) powders of BaCO_{3} and PbO_{2} were mixed in stoichiometric proportion and heated at $450^{\circ} \mathrm{C}$ for 12 h to avoid the loss of Pb . The resulting mixture was calcined at $950{ }^{\circ} \mathrm{C}$ for 12 h . The mixture obtained was pressed into pellets and sintered in oxygen ambient at the calcination temperature for 24 h . During sintering, pellets were dipped in a powder of like composition to avoid the loss of volatile Pb at high temperatures. After a few cycles of this procedure, we obtained hard pellets of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$.

Samples were characterized using the XRD technique. XRD measurements were carried out using a Rigaku make rotating anode x -ray generator (Rotoflex) with a Rigaku x-ray diffractometer. The powdered sample was pressed on a glass plate, mounted vertically on the sample table, and diffraction patterns were recorded using $\mathrm{Cu} \mathrm{K} \alpha(1.54 \AA)$ radiation. Data was collected in the 2θ range from 10° to 90° in steps of 0.02° using a scintillation detector. Only single-phase materials with no impurity phases were used in this study. XRD data was analyzed using the modified version of the profile refinement program of Young [20]. Various key parameters used in Rietveld refinement are atomic positions, occupancies and temperature factors and the instrument parameters like the zero angle and scale factor.

Photoemission measurements were carried out using a VSW ESCA machine equipped with a hemispherical analyzer, twin-anode x-ray source and a UV source. XPS and UPS

Table 1. Structural parameters of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ obtained from the Rietveld analysis of the XRD patterns. Lattice parameters and bond lengths are given in \AA.

Compound	BaPbO_{3}	$\mathrm{Ba}_{2} \mathrm{PbO}_{4}$
Structure	Orthorhombic	Tetragonal
Space group	Imma	$I 4 / m m m$
Lattice	$a=6.021, b=8.501$,	$a=4.284$
parameters	$c=6.056$	$c=12.951$
$\mathrm{Ba}-\mathrm{O} 1$	2.736	2.981
$\mathrm{Ba}-\mathrm{O} 2$	2.853	2.419
$\mathrm{~Pb}-\mathrm{O} 1$	2.145	2.154
$\mathrm{~Pb}-\mathrm{O} 2$	2.149	2.061
$\mathrm{~Pb}-\mathrm{O} 1-\mathrm{Pb}$	164.5°	180°
$R_{\text {wp }}(\%)$	10.08	36.12
$R_{\mathrm{p}}(\%)$	7.05	26.12

measurements were done using $\mathrm{Al} \mathrm{K} \alpha$ and He I radiations with resolutions of 0.9 eV and 0.1 eV respectively. The base pressure in the analysis chamber was maintained below 6.0×10^{-10} Torr. Freshly sintered pellets were loaded into the preparation chamber of the ESCA machine and were scraped repeatedly in situ in UHV with the help of a diamond file, until the O 1 s signal did not exhibit further changes.

Electronic structure calculations were performed using the tight binding linear muffin tin orbitals (TB-LMTO) within the atomic sphere approximation (ASA) [21]. Calculations were done self-consistently and the combined correction terms were included. Spherical harmonics were included up to $l=3$ (f-like orbital) in constructing basis functions. All the calculations were done within the allowed range of overlap between the atoms, enabling the use of the LMTO-ASA method. The structural parameters obtained by the Rietveld refinement of the XRD data were used as the input for these calculations.

3. Results

Figure 1 shows the observed and fitted data of the XRD patterns obtained for BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$. XRD data for BaPbO_{3} was excellently fitted with the space group Imma and could not be fitted to the space group Pbnm as reported earlier [5]. The $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ data was nicely fitted using the $I 4 / \mathrm{mmm}$ space group [4].

Various bond lengths, bond angles and R-factors obtained from the Rietveld fitting of the XRD data are shown in table 1. The lattice parameters obtained are in good agreement with the previously reported data $[15,5]$. The orthorhombic distortion observed in BaPbO_{3} (space group Imma) is quite uncommon in perovskite oxides. Similar distortion has previously been reported for PrAlO_{3} [22]. It is interesting to note that the lattice parameters a and c differ only from the second decimal place onwards and the $\mathrm{Pb}-\mathrm{O} 1$ and $\mathrm{Pb}-\mathrm{O} 2$ bond lengths are also of similar magnitude in BaPbO_{3} (table 1). In $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$, the $\mathrm{Pb}-$ O 2 bond length is smaller than the $\mathrm{Pb}-\mathrm{O} 1$ bond length which is an unusual distortion in layered oxides. The $\mathrm{Pb}-\mathrm{O} 1-\mathrm{Pb}$ bond angle increases from 164.5° in BaPbO_{3} to 180° in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$.

Figure 2 shows the experimental valence band spectra of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ excited using He I radiation and compared with the calculated DOS. The experimental valence

Figure 1. Observed (+) and fitted (-) x-ray diffraction patterns of BaPbO_{3} (left panel) and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ (right panel). The difference between the observed and fitted patterns is shown at the bottom.

Figure 2. (a) Experimental valence band spectra of $\mathrm{BaPbO}_{3}(\bigcirc)$ and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}(\mathrm{O})$ excited by He I radiation. (b) Calculated total DOS and partial DOS (O 2p, Ba 4 d and Pb 5 d) of BaPbO_{3}. (c) Calculated total DOS and partial DOS (O1 2p, O2 2p, Pb 5 d and Ba 4 d$)$ of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$.
bands (figure 2(a)) of the two the compounds appear similar, exhibiting two prominent features of $11-6$ and $6-1 \mathrm{eV}$ binding energies. The intensity close to the Fermi edge appears to be zero or very small. The intensity of the feature around 9 eV is a little higher in BaPbO_{3} compared to $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$. The calculated DOS of BaPbO_{3} showed a small number of states for $11-5 \mathrm{eV}$ and a strong contribution between 5 eV and the

Fermi edge, and exhibits a finite DOS at E_{F} indicating the metallic nature. Comparing the total DOS with the partial DOS of $\mathrm{O} 2 \mathrm{p}, \mathrm{Pb} 5 \mathrm{~d}$ and Ba 4 d (lower panel of figure 2(b)), it is evident that the total DOS has its primary contribution from O 2 p with small contributions from Pb 5 d and Ba 4 d states. States in the vicinity of the Fermi edge arise only from Pb 5 d and O 2 p. Contributions from Pb 6 s and Ba 5 p (not shown) states are insignificant in this energy range. The calculated total DOS of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ (figure 2(c)) is similar to that of BaPbO_{3} below the Fermi edge. Unlike $\mathrm{BaPbO}_{3}, \mathrm{Ba}_{2} \mathrm{PbO}_{4}$ exhibits a gap of 1.3 eV starting at the Fermi edge, suggesting a semiconducting nature of this compound. The partial DOS of various atoms of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ are shown in the lower panel of figure 2(c). Since $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ is a layered compound, the O 1 and O2 2p DOS are shown separately. Major contributions to the total DOS arise from O 2 p (both O1 and O2) states and a small contribution comes from Ba 4 d and Pb 5 d states. O 22 p has more states closer to the Fermi edge (around 2 eV B.E.), whereas O1 2p has a higher contribution at 3.0 eV B.E. Such a difference in the distribution of states of O1 and O2 may be related to the shorter $\mathrm{Pb}-\mathrm{O} 2$ bond length compared to the $\mathrm{Pb}-$ O1 bond length obtained by the Rietveld analysis of the XRD data (see table 1). The relative intensities of the calculated total DOS for both BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ are significantly different from the experimental results, presumably due to the fact that experimental spectra are influenced by the matrix element effects and lifetime broadening of the holes and electrons in addition to various other final state effects which are not considered in the $a b$ initio calculations. Agreement between the experimental and calculated results is better in the case of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ compared to that of BaPbO_{3}.

High resolution valence band spectra in the vicinity of the Fermi edge excited by He I radiation are shown in figure 3. There is a striking difference between the spectra of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ near the Fermi edge. BaPbO_{3} exhibits finite intensity at the Fermi edge, whereas $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ exhibits zero intensity. This observation is in agreement with the metallic and semiconducting behaviors observed respectively for BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ in our calculated results. Intensity at the Fermi edge in BaPbO_{3} is contributed by O 2 p and Pb 5 d states as seen in figure 2(b).

Figure 3. Valence band spectra near the Fermi edge for $\mathrm{BaPbO}_{3}(\bullet)$ and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}(\mathrm{O})$ excited by He I radiation.

Core levels were analyzed using the asymmetric Gaussian-Lorentzian (AGL) sum function [23] defined as
$\operatorname{AGL}(x, p, w, h, m, T S, T L)=h\left\{(1-m) \mathrm{e}^{-Q \ln 2}\right.$

$$
\begin{equation*}
\left.+\frac{m}{1+Q}+T S\left(1-\mathrm{e}^{-Q \ln 2}\right) \mathrm{e}^{\frac{-6.9}{T L} Q}\right\} \tag{1}
\end{equation*}
$$

where $Q=\left[\frac{2(x-p)}{w}\right]^{2} ; p$, the peak position; w, the FWHM of the peak; h, the integrated area of the peak; m, the GL mixing parameter (0 for 100% Gaussian and 1 for 100% Lorentzian); $T S$ and $T L$ are the parameters for the asymmetric tail and are functions of m, w ($T S=0$ for a symmetric GL function).

Ba 3 d and Pb 4 f core level spectra of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ are shown in figure 4. Ba 3d spectra of the two compounds look similar and overlap with each other. These spectra were fitted using the asymmetric Gaussian-Lorentzian sum function (equation (1)). Ba 3d spectra were fitted with a FWHM of 3.6 eV , spin-orbit splitting (S.O.S.) of 15.4 eV and $T S$ of 0 (no asymmetry). Pb 4 f spectra of the two compounds are compared in figure 4(b). Interestingly, BaPbO_{3} exhibits more asymmetry compared to $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$. As shown in the graph, Pb 4 f spectra of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ could be fitted very well by using equation (1) with $T S=0$ (no asymmetry). On the other hand the Pb 4 f spectrum of BaPbO_{3} was fitted using equation (1) with $T S=0.35$ and $T L=15$ (figure 4(c)).

Figure 5 shows the O 1 s spectra of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ and BaPbO_{3}. $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ exhibits a high B.E. shoulder at 530.9 eV along with the main peak at 528.9 eV . These peaks were deconvoluted using equation (1) without the asymmetry part ($T S=0$) and the FWHM values obtained are 2.8 eV for the high B.E. shoulder and 1.9 eV for the main peak. Interestingly, the O 1 s spectrum of BaPbO_{3} is a single peak with high asymmetry and could not be fitted with $T S=0$. The AGL fit resulted in $T S=0.75, T L=35$ with a FWHM of 1.95 eV for the O 1 s spectrum of BaPbO_{3}. The asymmetric O 1s line shape for BaPbO_{3} was previously reported by Wertheim et al [24]. The double-peak structure of the O 1s core level in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ is due to the layered nature of the compound. The structure of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ can be regarded as a stacking of single BaPbO_{3} layers separated by BaO layers [25]. The main peak corresponds to

Figure 4. (a) Ba 3 d spectra along with the AGL fit (_) to the data for $\mathrm{BaPbO}_{3}(\mathrm{O})$ and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}(\bigcirc)$. (b) $\mathrm{Pb} 4 f$ spectra of $\mathrm{BaPbO}_{3}(\bullet)$ and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}(\mathrm{O})$ along with the AGL fit ($-\quad$) to the $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ data. (c) Pb 4 f data of BaPbO_{3} (O) along with the AGL fit (-). BG represents the Shirley background.
the oxygen in the BaPbO_{3} layer and the shoulder corresponds to oxygen in the BaO layer. The FWHM of the shoulder is much higher compared to that of the main peak for $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$, which can be attributed to the presence of little inter-grain oxygen contributing to the O 1 s signal around the same energy. The main peaks for both the compounds occur at 528.9 eV .

4. Discussion

The structure of BaPbO_{3} has extensively been studied in the past by several workers and was controversial for many years. XRD data of BaPbO_{3} prepared in this study using the solid state reaction method could be fitted well to the space group Imma and the result is in agreement with the recently reported structure of $\mathrm{BaPbO}_{3}[15,16]$. Structural data of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ was fitted to the $I 4 / \mathrm{mmm}$ space group which agrees well with the earlier reports [4].

UPS results close to the Fermi edge indicated an insulating nature for $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ and a metallic nature for BaPbO_{3}. Our LMTO calculations supported the results from UPS by exhibiting finite states at E_{F} for BaPbO_{3} and a gap of about 1.3 eV for $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$. The band gap obtained in our calculations is similar in magnitude to the gap observed by Matheiss [4]. The electronic properties of these materials are primarily decided by the overlap of Pb 5 d 6 s states with O 2 p states. The opening up of a gap in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ is related to the unusual

Figure 5. O 1 s spectra of (a) $\mathrm{Ba}_{2} \mathrm{PbO}_{4}(\mathrm{O})$ with the AGL fit (- - $)$ and (b) $\mathrm{BaPbO}_{3}(\mathrm{O})$ with the AGL fit (-). BG represents the Shirley background.
distortion of the PbO_{6} octahedra with smaller apical $\mathrm{Pb}-\mathrm{O} 2$ bond length and larger planar $\mathrm{Pb}-\mathrm{O} 1$ bond length (table 1) as obtained from our Rietveld analysis of the XRD data. Interestingly, the apical $\mathrm{Pb}-\mathrm{O} 2$ bond length in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ is smaller than the planar $\mathrm{Pb}-\mathrm{O} 1$ bond length in BaPbO_{3} which implies that $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ should also be conducting. But the conduction predominantly occurs in the basal plane and thus only the planar bond length ($\mathrm{Pb}-\mathrm{O} 1$) plays a crucial role in deciding the electronic properties. $\mathrm{Pb}-\mathrm{O} 1$ bond lengths are almost the same in magnitude (table 1) for BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ and the opening up of a gap in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ cannot be explained by considering the $\mathrm{Pb}-\mathrm{O} 1$ bond length. The $\mathrm{Pb}-\mathrm{O} 1-$ Pb bond angle can influence the integral of overlap between Pb 5 d 6 s and O 2 p states. Our structural studies indicated that the $\mathrm{Pb}-\mathrm{O} 1-\mathrm{Pb}$ bond angle increases from 164.5° in BaPbO_{3} to 180° in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$. Straightening of the bond in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ can reduce the overlap of Pb and O states and thus can induce a gap.

The core levels of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ did not exhibit asymmetry and, interestingly, asymmetry was not observed in the Ba 3 d core level of BaPbO_{3} either. The Pb 4 f and O 1s core levels of BaPbO_{3} exhibited asymmetry. Asymmetry in the core levels has been observed for metals with high density of states at the Fermi level [26]. Core level shape can be asymmetric in semimetals also [27, 28]. Asymmetry is mainly due to the influence of the core hole potential on the DOS in the vicinity of the Fermi edge. Asymmetry of a core level in an atom depends on the local DOS at E_{F} corresponding to that atom [29]. In the case of $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$, both UPS and LMTO studies exhibited no states at E_{F} and thus the core levels exhibited no asymmetry. On the other hand, BaPbO_{3} shows finite states at E_{F} in both UPS and LMTO studies. Interestingly, only Pb 4 f and O 1 s

Figure 6. Angular momentum projected DOS of Ba, Pb and O in BaPbO_{3} in the vicinity of the Fermi edge.
core levels of BaPbO_{3} exhibited asymmetry whereas the Ba 3 d spectrum did not exhibit asymmetry.

To understand the origin of asymmetry in Pb 4 f and O 1s spectra in comparison to Ba 3 d spectrum of BaPbO_{3}, we have shown the $\mathrm{Ba}(4 \mathrm{~d}, 6 \mathrm{~s}), \mathrm{O} 2 \mathrm{p}, \mathrm{Pb}(6 \mathrm{~s}, 5 \mathrm{~d})$ angular momentum projected DOS in figure 6. The total DOS were primarily contributed by these levels in BaPbO_{3}. O 2 p has the highest DOS at E_{F} compared to other levels and thus the most asymmetric O 1 s core level with $T S=0.75$ and $T L=35$ was observed. Pb also contributes to the total DOS through considerable 5 d and a small number of 6 s states, but the Pb contribution is significantly low compared to the O contribution to the total DOS at E_{F}. Therefore, the asymmetry observed in the Pb 4 f spectrum is very small with the $T S=$ 0.35 and $T L=15$ compared to the asymmetry in O 1 s . The contribution made by Ba to the total DOS of BaPbO_{3} is extremely small or zero and thus Ba 3 d did not exhibit asymmetry in BaPbO_{3}. Core level asymmetry can be used to probe the local DOS at E_{F}.

5. Conclusion

We have investigated the electronic structure of BaPbO_{3} and $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ using photoemission and TB-LMTO methods. Valence bands obtained from UPS measurements were interpreted using the $a b$ initio TB-LMTO calculations. The XRD data was analyzed using the Rietveld refinement method. Our investigations showed an insulating ground state for $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$ and a metallic ground state for BaPbO_{3}. The $\mathrm{Pb}-$ $\mathrm{O} 1-\mathrm{Pb}$ bond angle plays a key role in opening up a gap in $\mathrm{Ba}_{2} \mathrm{PbO}_{4}$. Core level asymmetries observed in Pb 4 f and O 1s spectra of BaPbO_{3} are related to the local DOS of Pb 5 d 6 s and O 2 p states, respectively, at the Fermi edge.

References

[1] Sleight A W, Gillson J L and Bierstedt P E 1975 Solid State Commun. 1727
[2] Cava R J et al 1989 Nature 339291
[3] Fu W T and Drost R J 1998 Physica C 30451
[4] Matheiss L F 1989 Phys. Rev. B 42359
[5] Shannon R D and Bierstedt P E 1970 J. Am. Ceram. Soc. 53635
[6] Cava R J, Takagi H, Krawjewski J J, Peck W F Jr and Hwang H Y 1993 Phys. Rev. B 4711525
[7] Verheijen A A, Fu W T, Ruitenbeek J M, Smits A, Xu Q and De Jongh L J 1989 Solid State Commun. 71573
[8] Ikushima H and Hawakawa S 1966 Solid-State Electrochem. 9921
[9] Samsonov G V 1973 The Oxide Handbook (New York: IFI/Plenum) p 222
[10] Heish Y-H and Fu S-L 1992 Ceram. Int. 18289
[11] Hoppe R and Blinne K 1958 Z. Anorg. Allg. Chem. 293251
[12] Wagner G and Binder H 1959 Z. Anorg. Allg. Chem. 29812 Weiss R 1958 C. R. Acad. Sci. 2463073
Nitta T, Ngase K, Hayakawa S and Iida Y 1965 J. Am. Ceram. Soc. 48642
[13] Shuvaeva E T and Fesenko E G 1970 Kristallografiya 15379 Thornton G and Jacobson A J 1976 Mater. Res. Bull. 11837 Cox D E and Sleight A W 1977 ERDA Energy Res. Abstr. 2 7623
[14] Marx D T, Padaelli P G, Jorgensen J D, Hitterman R L, Hinks D G, Pei S and Dabrowski B 1992 Phys. Rev. B 4611444
Ritter J, Ihringery K J, Maichle W, Prandly A, Hoser A and Hewat Z 1989 Physik B 75297
[15] Moussa S M, Kennedy B J and Vogt T 2001 Solid State Соттип. 119549
[16] Fu W T, Visser D and Ijdo D J W 2005 Solid State Commun. 134647
Fu W T, Visser D, Knight K S and Ijdo D W J 2007 J. Solid State Chem. 1801559
[17] Xu Q, Fu W T, van Ruitenbeek J M and de jongh D J 1990 Physica C 167271
Rosseinsky M J and Prassides K 1991 Acta Crystallogr. C 472519
[18] Liang C-S, Lee Y-S and Wu J-M 2005 J. Cryst. Growth 283 390
Liang C-S, Wu J-M and Chang M-C 2002 Appl. Phys. Lett. 813624
Lou Y-R and Wu J-M 2001 Appl. Phys. Lett. 793669
[19] Kuwabara M 1989 J. Mater. Sci. Lett. 8411
Nomura S 1985 Japan. J. Appl. Phys. 24736
Nitta T, Taki H and Nagase K 1964 Japan. J. Appl. Phys. 173
[20] Young R A 1995 The Rietveld Method (Oxford: Oxford University Press)
[21] Anderson O K 1975 Phys. Rev. B 123060
[22] Burbank R P 1970 J. Appl. Crystallogr. 3112
[23] Seah M P and Brown M T 1998 J. Electron Spectrosc. Relat. Phenom. 9571
Zhang B, Quan Z, Zhang T, Guo T and Mo S 2001 J. Appl. Phys. 101014107
[24] Wertheim G K, Remeika J P and Buchanan D N E 1982 Phys. Rev. B 262120
[25] Jacob K T and Jayadevan K P 1998 Mater. Sci. Eng. B 52134
[26] Doniach S and Sunjic M 1970 J. Phys. C: Solid State Phys. 3285
[27] van Attekum P M Th M and Wertheim G K 1979 Phys. Rev. Lett. 431896
[28] Rama Rao M V and Shripathi T 1996 J. Electron Spectrosc. Relat. Phenom. 78159
[29] Shevchick N J 1974 Phys. Rev. Lett. 331336

